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ABSTRACT

Medical image segmentation plays an important role in various aspects of the med-
ical field. In this paper we want to fine-tune a foundation model from MONAI and
evaluate the performance of the fine-tuned model on a medical image segmenta-
tion task for the Han-Seg Challenge in order to investigate if we are able to solve
the challenge by using a fine-tuned foundation model. The goal of the challenge
is to segment 30 Organs-at-risk within the head and neck region from CT images.
For that we use a Foundation Model from MONALI and apply several fine-tunings
onto it to increase its performance. We then compare the results of the fine-tuned
and the not fine-tuned foundation model. We show that the fine-tuned models are
able to learn the task of medical image segmentation with the given fine-tuning
data. However, the performance of the our fine-tuned models are disappointing
when compared to the not fine-tuned foundation model with regards to the chal-
lenge task. We further propose some ideas how to increase the performance of the
fine-tuned models.

1 INTRODUCTION AND MOTIVATION

In the ever-evolving field of medical research and healthcare, the significance of biomedical image
segmentation cannot be overstated. This critical process plays an important role in various aspects
of the medical field, primarily focusing on the identification of Regions of Interest (ROIs). The
implications extend far beyond visual analysis, including substantial improvements in diagnosis
and treatment methodologies. The motivation behind investigating this area lies in the pursuit of
reducing human errors, a huge concern in healthcare.

Recently, Foundation Models gained a lot in popularity. These models refer to large-scale pre-
trained models that serve as the basis or foundation for various downstream tasks. These models are
typically trained on vast amounts of data, often encompassing diverse sources from for example the
internet, books, articles, and other material.

The performance of the foundation models can be increased through fine-tuning. By opting for
fine-tuning, practitioners unlock the ability to customize models to specific domains, ensuring a
more tailored and contextually relevant application. This approach facilitates customization and
also contributes to performance increases, aligning the segmentation process more closely with the
unique requirements of diverse medical scenarios.

1.1 STRUCTURE OF THIS PAPER

In this paper, we utilize the capabilities of a foundation model provided by MONALI to conduct a
comprehensive evaluation of its performance when fine-tuned and to participate at the Grand Chal-
lenge. The MONAI Foundation Model serves as the cornerstone of our investigation, providing a
robust and versatile framework for deep learning in healthcare imaging. In the following subsection,
we describe the details of the MONAI Foundation Model, highlighting its architecture and features
that make it a compelling choice for our study.
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Section 2 of our paper describes the problem and the methodology employed in our study.

In Sections 3 and 4, we detail our experimental setup and present the corresponding results. We offer
a comprehensive overview of the performance metrics and benchmarks achieved by the fine-tuned
MONALI Foundation Models.

The following Section 5 discusses some challenges that we encountered during the project.

In Section 6 of our paper, we explore the potential applications and broader implications arising
from the work presented in the preceding sections. This critical section serves as a bridge between
our empirical findings and the real-world impact of our research.

Lastly, Section 7 encapsulates our conclusions and summarizes the key takeaways from our study.

1.2 THE MONAI FOUNDATION MODEL

Introducing MONAI (Medical Open Network for Al) (https://github.com/
Project-MONAI/MONATI), a PyTorch-based, open-source framework deep learning frame-
work in healthcare imaging. MONALI is equipped with a suite of features tailored specifically for
the demands of medical data.

At the core of MONALI lies its flexible pre-processing capabilities, crafted to handle multi-
dimensional medical imaging data. This adaptability ensures easy integration with diverse datasets,
accommodating the complexity inherent in medical images.

MONAI includes comprehensive implementations for networks, providing a robust foundation for
constructing and fine-tuning models tailored to specific medical imaging tasks. The framework
offers a large array of tools, empowering researchers and practitioners to explore novel architectures
that cater to the intricacies of healthcare data.

Navigating the loss functions is a crucial aspect of any deep learning framework, and MONALI in-
cludes a suite of loss functions tailored for medical imaging applications.

Moreover, MONALI shines with its large set of evaluation metrics. These metrics provide a quantita-
tive measure of model performance, ensuring a thorough assessment of the algorithms’ effectiveness
in diverse medical imaging scenarios.

One of MONATI’s standout features is its repository of pre-trained foundation models specifically
designed for medical imaging tasks. This collection accelerates the development process by provid-
ing a starting point for practitioners, reducing the need for extensive manual labeling and training
data. Leveraging these pre-trained models, users can speed up their research and development of
applications in healthcare imaging, fostering innovation in diagnostics, treatment planning, and be-
yond.

Furthermore, we want to note that we also tried to use the Segment Anything Model (SAM) by Meta
(https://segment—-anything.com/). However, this was not possible since the challenge
required use to be to able to handle 3D data, which SAM was not capable of.

2 PROBLEM DESCRIPTION AND METHOD

We want to participate at the Grand Challenge HaN-Seg Challenge (https://han-seg2023.
grand-challenge.org/). This section states the problem and describes our approach of using
a fine-tuned foundation model for solving it.

2.1 THE CHALLENGE

The objective of the Grand Challenge HaN-Seg Challenge (Head and Neck Segmentation Chal-
lenge) is to automatically delineate 30 Organs-at-risk (OARs) within the HaN region from CT im-
ages in the given test set. This set comprises 14 CT and MR images of the same patients. The
challenge leverages the information available in a training set, which includes 42 CT and MR im-
ages of the same patients, accompanied by reference 3D OAR binary segmentation masks for CT


https://github.com/Project-MONAI/MONAI
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Number of epochs 30

Loss Binary Cross Entropy
Optimizer Adam
Learning rates 0.0001 - 0.0005

Table 1: Overview of the training hyperparameters

images. The test is maintained as private, and its release is withheld from potential participants to
prevent fine-tuning of algorithms. The dataset can be found at/Podobnik et al.| (2023).

2.2 METHODOLOGY

To solve the presented challenge we utilize the ct pleen Foundation Model from MONAI. The model
is based on a 3D U-Net architecture, a widely used framework for medical image segmentation. The
U-Net consists of an encoder and a decoder, connected by a bottleneck layer. The architecture
parameters are as follows:

* Spatial Dimensions: 3 (for 3D)

* Input Channels: 1 (grayscale images)

* Output Channels: 2 (background and spleen)

¢ Channels: (16, 32, 64, 128, 256) in encoder and symmetrically in decoder
* Strides: (2, 2, 2, 2) for down-sampling

* Number of Residual Units: 2

¢ Normalization: Batch Normalization

The weights of the neural network are provided by MONAL

Then, we compare three different configurations of the Foundation Model:

* The pre-trained model without any fine-tuning

* We add one additional layer to the neural network of the pre-trained model and fine-tune it
with the training set (set 1) of the HaN-Seg challenges

* We fine-tune the pre-trained model by adding two additional neural network layers training
with the training set (set 1) of the HaN-Seg challenges

The foundation model has one input and two output channels. These numbers of channels have to
adapted to fit our data. We need two input channels for both the CT and MR data and furthermore
we need 30 output channels instead of two, matching the 30 Organs-at-risk within the HaN-Seg data.
For that we use convolutional layers to combine the two input channels and to adjust the number of
final output channels. We do this by modifying the model by freezing all layers except the last one
or two. This means that we kept the architecture of the original model intact and only allowed the
last one or two layers to be trainable, while keeping all other layers frozen.

For training we use the hyperparameters that are depicted in table[I]

3 EXPERIMENTAL SETUP

For evaluating the performance of our three different models we use two metrics: Binary Cross-
Entropy Loss and the Dice Coefficient. This section describes the experimental process and the
metrics used for evaluation.

3.1 METRICS

The choice of loss functions plays an important role in training models effectively. Two widely
used loss functions, Cross-Entropy Loss and Dice Coefficient, are particularly noteworthy for their
effectiveness in addressing different aspects of the segmentation task.
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(Binary) Cross-Entropy Loss is a commonly employed loss function in image segmentation tasks.
It evaluates the difference between the predicted probability distribution and the ground truth distri-
bution. In the context of segmentation, where the goal is to classify each pixel into different classes,
Cross-Entropy Loss measures the dissimilarity between the predicted probability of each class for
a pixel and the actual class label. This loss function is effective in penalizing models for making
confident yet incorrect predictions, making it suitable for tasks where pixel-wise accuracy is crucial.

The formula for Cross-Entropy Loss involves calculating the negative logarithm of the predicted
probability assigned to the correct class. It encourages the model to assign high probabilities to the
correct class and low probabilities to incorrect ones. The minimization of this loss function during
training results in a model that accurately assigns pixel-wise labels.

CE=— > [ye-log(pe) + (1 —yc) - log(1 —p)]

classes ¢

In the binary case, i.e., when the number of classes equals two, the BCE can be calculated as:

BCE = —y - log(p) + (1 — y) - log(1 — p)

The Dice Coefficient, often referred to as the F1 score or Sgrensen-Dice coefficient, assesses the
overlap between the predicted segmentation and the ground truth. It is particularly useful when deal-
ing with imbalanced datasets, where certain classes or regions of interest might be underrepresented.
The Dice Coefficient is calculated as twice the intersection of the predicted and ground truth regions
divided by the sum of their areas.

The formula for the Dice Coefficient emphasizes both precision and recall, making it a suitable met-
ric for segmentation tasks where capturing the true positives while minimizing false positives and
false negatives is crucial. Its values range from O to 1, with 1 indicating a perfect overlap between
the predicted and ground truth segmentations.

In summary, while Cross-Entropy Loss is effective for pixel-wise classification tasks, Dice Coeffi-
cient provides a valuable metric for evaluating the spatial overlap and segmentation accuracy, espe-
cially in scenarios where imbalanced datasets or nuanced segmentation boundaries are prevalent.

3.2 SETUP

Our primary testing function evaluates the segmentation models on the test dataset (set 2). It sets the
models to evaluation mode, iterates through batches in the test loader, applies the models to input
images, computes the Binary Cross Entropy loss for the entire batch and each channel, thresholds
model outputs to obtain binary masks, calculates the Dice coefficient for each channel, and prints
information about the overall test loss, average Binary Cross Entropy loss per channel, and average
Dice coefficient per channel. Additionally, the testing function visualizes slices with labels for the
samples in the batch.

4 RESULTS

We evaluate the performance of all three model configurations. The results can be seen in figures 4}
and ] We can see from them that the two layer fine-tuned model is able to learn way more than
the model on which we only fine-tuned the last layer. However, the not fine-tuned model performs
the best on the challenge task. This could indicate that the foundation model from MONALI is too
inflexible to be able to adapt to the new task.
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Figure 1: The results of the not fine-tuned model
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Figure 2: The results of the one layer fine-tuned model
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Figure 3: The results of the two layer fine-tuned model

From Scratch 2 layers fine-tuned
average: 0.28551872992666666 average: 0.03649340971366667
min: 3.2504e-06 (Channel 22) min: 0 (Channel 9)
max: 0.7659 (Channel 15) max: 0.423 (Channel 28)

Figure 4: Results of the Model from Scratch vs Pretrained

5 DISCUSSION

During the course of our project, we encountered several challenges that influenced our approach and
outcomes. In this section, we discuss these challenges encountered during the fine-tuning process
of our segmentation model and propose some ideas how to possibly address them.

Reshaping Data Instances

The size of our data instances posed a significant hurdle, necessitating reshaping to enable effec-
tive fine-tuning of our model. This step was crucial for accommodating the data within the model
architecture and optimizing its performance.

Limited Training Data
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Another challenge arose from the limited number of training instances. With only 42 data instances
available, concerns were raised regarding the adequacy of the sample size for robust model training.

Computational Resource Requirements

Fine-tuning the models proved to be computationally intensive, requiring substantial computational
resources. Increasing the computational resources could benefit the models’ performance.

Adapting to Multilabel Segmentation

Adapting the pre-trained model for multilabel segmentation presented additional challenges, pri-
marily due to significant differences from binary tasks. Considering the complexity involved, tran-
sitioning to multiclass segmentation could potentially be simpler approach for model adaptation and
training, with the expectation of yielding more promising results.

Addressing Performance Limitations

The performance of the model in certain channels was suboptimal, possibly stemming from down-
sampling and small segmentation masks. To address this, strategies such as leveraging more pow-
erful computational resources for full-size training, employing data augmentation techniques, and
conducting hyperparameter tuning could be considered to enhance overall performance.

6 APPLICATIONS AND IMPLICATIONS

In the field of medical diagnosis, the fine-tuned model might emerge as a powerful ally, capable
of providing enhanced accuracy and precision in identifying anomalies and patterns within medical
images. This, in turn, has far-reaching implications for treatment planning, as the model’s ability
to discern intricate details can contribute to the development of more personalized and effective
treatment strategies. The fine-tuned model might then become an indispensable tool in the hands of
healthcare professionals, facilitating a more refined and targeted approach to patient care.

The usage of the fine-tuned model is not without its ethical considerations, particularly in the context
of Al integration into medical imaging. As healthcare becomes increasingly reliant on Al technolo-
gies, addressing ethical considerations becomes very important. Issues such as data privacy, trans-
parency in decision-making processes, and the potential impact on patient-doctor relationships must
be carefully navigated. A thoughtful exploration of the ethical dimensions associated with the fine-
tuned model ensures that its deployment aligns with the principles of beneficence, non-maleficence,
autonomy, and justice in the medical field.

7 CONCLUSION

Fine-tuning foundation models for medical image segmentation is is a powerful technique in using
the power of deep learning for healthcare applications. This approach enables the adaptation of
pre-trained neural network architectures to the nuanced characteristics of medical imaging data. By
leveraging knowledge acquired from diverse datasets during initial training, fine-tuning addresses
the challenge of limited medical data, facilitating faster convergence and efficient model develop-
ment. In the scope of this paper we participated in the Grand Challenge Han-Seg Challenges. Its
objective is to automatically segment 30 Organs-at-risk within the Head and Neck region from CT
images. To solve the challenge task we used the MONAI Foundation Model and fine-tuned it in
various ways with the given data from the challenge. Unfortunately, the performance of the fine-
tuned models on the challenge was disappointing compared to the pre-trained model without any
fine-tunings. We conclude that the foundation model from MONALI is not flexible enough to adapt
to the new task.

The code of this project can be found at https://github.com/SabCas/
FoundationModel/blob/main/mtctvalidationtest.py.

7.1 FUTURE WORK

Possibilities for future work involve addressing the need for more data in our project. Expanding the
dataset can contribute significantly to the robustness and generalization capabilities of the model.


https://github.com/SabCas/FoundationModel/blob/main/mtctvalidationtest.py
https://github.com/SabCas/FoundationModel/blob/main/mtctvalidationtest.py
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Collecting additional diverse and representative data instances can help in training a more compre-
hensive model that is capable of handling a broader range of variations and scenarios. Moreover,
the inclusion of more data can potentially alleviate challenges related to overfitting and improve the
model’s performance on unseen instances.

Furthermore, there is a growing demand for flexible foundation models in the medical domain. Ex-
isting foundation models, such as those found in the MONAI Zoo, offer valuable starting points.
However, they may not always be flexible enough to adapt to the diverse and evolving needs of med-
ical applications. In the future, addressing this challenge could present an interesting opportunity.
Developing more flexible foundation models tailored specifically for medical tasks could lead to
advancements in various areas, including medical imaging analysis, patient diagnosis, and treatment
planning. Such models would empower researchers and practitioners to tackle complex medical
problems with greater efficiency and accuracy.
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